八年级下册数学期末试卷及答案
自信,是成功的一半;平淡,是成功的驿站;努力,是成功的积淀;祝福,是成功的先决条件。祝你 八年级 数学期末考试取得好成绩,期待你的成功!以下是我为大家整理的八年级下册数学期末试卷,希望你们喜欢。
八年级下册数学期末试题
一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.如果 =x成立,则x一定是( )
A.正数 B.0 C.负数 D.非负数
2.以下列各组数为三角形的三边,能构成直角三角形的是( )
A.4,5,6 B.1,1, C.6,8,11 D.5,12,23
3.矩形具有而菱形不具有的性质是( )
A.对角线互相平分 B.对角线相等
C.对角线垂直 D.每一条对角线平分一组对角
4.已知|a+1|+ =0,则直线y=ax﹣b不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.下列四个等式:① ;②(﹣ )2=16;③( )2=4;④ .正确的是( )
A.①② B.③④ C.②④ D.①③
6.顺次连接矩形ABCD各边中点,所得四边形必定是( )
A.邻边不等的平行四边形 B.矩形
C.正方形 D.菱形
7.若函数y=kx+2的图象经过点(1,3),则当y=0时,x=( )
A.﹣2 B.2 C.0 D.±2
8.等边三角形的边长为2,则该三角形的面积为( )
A. B. C. D.3
9.某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是
( )
A.平均数是2 B.众数是2 C.中位数是2 D.方差是2
10.下列函数中,自变量的取值范围选取错误的是( )
A.y=x+2中,x取任意实数 B.y= 中,x取x≤﹣1的实数
C.y= 中,x取x≠﹣2的实数 D.y= 中,x取任意实数
11.如图,直线y=kx+b经过点A(2,1),则下列结论中正确的是( )
A.当y≤2时,x≤1 B.当y≤1时,x≤2 C.当y≥2时,x≤1 D.当y≥1时,x≤2
12.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为( )
A.6
八年级数学上册期末试卷及答案
关键的八年级数学期末考试就临近了,只要努力过、奋斗过,就不会后悔。下面是我为大家精心整理的八年级数学上册期末试卷,仅供参考。 八年级数学上册期末试题 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D. 2.下列运算正确的是( ) A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2 3. 的平方根是( ) A.2 B.±2 C. D.± 4.用科学记数法表示﹣0.00059为( ) A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7 5.使分式 有意义的x的取值范围是( ) A.x≤3 B.x≥3 C.x≠3 D.x=3 6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 7.若 有意义,则 的值是( ) A. B.2 C. D.7 8.已知a﹣b=1且ab=2,则式子a+b的值是( ) A.3 B.± C.±3 D.±4 9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( ) A.a B.2a C.3a D.4a 10.已知xy<0,化简二次根式y 的正确结果为( ) A. B. C. D. 11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( ) A. B. C.2 D. 12.若关于x的分式方程 无解,则常数m的值为( ) A.1 B.2 C.﹣1 D.﹣2 二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分. 13.将xy﹣x+y﹣1因式分解,其结果是 . 14.腰长为5,一条高为3的等腰三角形的底边长为 . 15.若x2﹣4x+4+ =0,则xy的值等于 . 16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C= 度. 三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。 17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2. 18.先化简,再求值: (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2. (2)( )÷ ,其中a= . 19.列方程,解应用题. 某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天? 20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论. 21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF. (1)求证:AE=AF; (2)求∠EAF的度数. 22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索: 设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m . a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a= ,b= . (2)利用所探索的结论,用完全平方式表示出: = . (3)请化简: . 八年级数学上册期末试卷参考答案 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D. 【考点】轴对称图形. 【分析】根据轴对称图形的概念求解. 【解答】解:A、不是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项错误; C、不是轴对称图形,故本选项错误; D、是轴对称图形,故本选项正确. 故选D. 【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 2.下列运算正确的是( ) A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2 【考点】同底数幂的除法;合并同类项;同底数幂的乘法;二次根式的加减法. 【分析】根据合并同类项、同底数幂的乘法、除法,即可解答. 【解答】解:A、a+a=2a,故错误; B、a3•a2=a5,正确; C、 ,故错误; D、a6÷a3=a3,故错误; 故选:B. 【点评】本题考查了合并同类项、同底数幂的乘法、除法,解决本题的关键是熟记合并同类项、同底数幂的乘法、除法. 3. 的平方根是( ) A.2 B.±2 C. D.± 【考点】算术平方根;平方根. 【专题】常规题型. 【分析】先化简 ,然后再根据平方根的定义求解即可. 【解答】解:∵ =2, ∴ 的平方根是± . 故选D. 【点评】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错. 4.用科学记数法表示﹣0.00059为( ) A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:﹣0.00059=﹣5.9×10﹣4, 故选:C. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 5.使分式 有意义的x的取值范围是( ) A.x≤3 B.x≥3 C.x≠3 D.x=3 【考点】分式有意义的条件. 【分析】分式有意义的条件是分母不等于零,从而得到x﹣3≠0. 【解答】解:∵分式 有意义, ∴x﹣3≠0. 解得:x≠3. 故选:C. 【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键. 6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 【考点】平行四边形的判定. 【分析】根据平行四边形判定定理进行判断. 【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意; B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意; C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意; D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意; 故选D. 【点评】本题考查了平行四边形的判定. (1)两组对边分别平行的四边形是平行四边形. (2)两组对边分别相等的四边形是平行四边形. (3)一组对边平行且相等的四边形是平行四边形. (4)两组对角分别相等的四边形是平行四边形. (5)对角线互相平分的四边形是平行四边形. 7.若 有意义,则 的值是( ) A. B.2 C. D.7 【考点】二次根式有意义的条件. 【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可. 【解答】解:由题意得,x≥0,﹣x≥0, ∴x=0, 则 =2, 故选:B. 【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键. 8.已知a﹣b=1且ab=2,则式子a+b的值是( ) A.3 B.± C.±3 D.±4 【考点】完全平方公式. 【专题】计算题;整式. 【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可. 【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1, 将ab=2代入得:a2+b2=5, ∴(a+b)2=a2+b2+2ab=5+4=9, 则a+b=±3, 故选C 【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( ) A.a B.2a C.3a D.4a 【考点】平行四边形的性质. 【分析】由▱ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD. 【解答】解:∵▱ABCD的周长为4a, ∴AD+CD=2a,OA=OC, ∵OE⊥AC, ∴AE=CE, ∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a. 故选:B. 【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键. 10.已知xy<0,化简二次根式y 的正确结果为( ) A. B. C. D. 【考点】二次根式的性质与化简. 【分析】先求出x、y的范围,再根据二次根式的性质化简即可. 【解答】解:∵要使 有意义,必须 ≥0, 解得:x≥0, ∵xy<0, ∴y<0, ∴y =y• =﹣ , 故选A. 【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键. 11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( ) A. B. C.2 D. 【考点】翻折变换(折叠问题). 【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长. 【解答】解:∵DE垂直平分AB, ∴AE=BE, 设AE=x,则BE=x,EC=4﹣x. 在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9, 解得:x= , 则EC=AC﹣AE=4﹣ = . 故选B. 【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键. 12.若关于x的分式方程 无解,则常数m的值为( ) A.1 B.2 C.﹣1 D.﹣2 【考点】分式方程的解;解一元一次方程. 【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用. 【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值. 【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m, ∵当x=3时,原分式方程无解, ∴1=﹣m,即m=﹣1; 故选C. 【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键. 二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分. 13.将xy﹣x+y﹣1因式分解,其结果是 (y﹣1)(x+1) . 【考点】因式分解-分组分解法. 【分析】首先重新分组,进而利用提取公因式法分解因式得出答案. 【解答】解:xy﹣x+y﹣1 =x(y﹣1)+y﹣1 =(y﹣1)(x+1). 故答案为:(y﹣1)(x+1). 【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键. 14.腰长为5,一条高为3的等腰三角形的底边长为 8或 或3 . 【考点】等腰三角形的性质;三角形三边关系. 【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案. 【解答】解:①如图1. 当AB=AC=5,AD=3, 则BD=CD=4, 所以底边长为8; ②如图2. 当AB=AC=5,CD=3时, 则AD=4, 所以BD=1, 则BC= = , 即此时底边长为 ; ③如图3. 当AB=AC=5,CD=3时, 则AD=4, 所以BD=9, 则BC= =3 , 即此时底边长为3 . 故答案为:8或 或3 . 【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论. 15.若x2﹣4x+4+ =0,则xy的值等于 6 . 【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用. 【专题】计算题;一次方程(组)及应用. 【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值. 【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0, ∴ , 解得: , 则xy=6. 故答案为:6 【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键. 16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C= 180 度. 【考点】勾股定理的逆定理;勾股定理. 【分析】勾股定理的逆定理是判定直角三角形的方法之一. 【解答】解:连接AC,根据勾股定理得AC= =25, ∵AD2+DC2=AC2即72+242=252, ∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°, 故∠A+∠C=∠D+∠B=180°,故填180. 【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目. 三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。 17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2. 【考点】作图-轴对称变换. 【分析】分别利用关于x轴、y轴对称点的坐标性质得出各对应点的位置,进而得出答案. 【解答】解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标: A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1), 如图所示:△A2B2C2,即为所求. 【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键. 18.先化简,再求值: (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2. (2)( )÷ ,其中a= . 【考点】分式的化简求值;整式的混合运算—化简求值. 【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可; (2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可. 【解答】解:(1)原式=5x2﹣x2+y2﹣4x2+4xy﹣y2 =4xy, 当x=1,y=2时,原式=4×1×2=8; (2)原式= • = • =a﹣1, 当a= 时,原式= ﹣1. 【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 19.列方程,解应用题. 某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天? 【考点】分式方程的应用. 【分析】设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,根据总的工作量为1列出方程并解答. 【解答】解:设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 , 根据题意,得: +2×( + )=1, 解得x=4.5. 经检验,x=4.5是原方程的根. 答:乙车间单独制作这批棉学生服需要4.5天. 【点评】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数. 20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论. 【考点】因式分解的应用. 【分析】根据完全平方公式,可得非负数的和为零,可得每个非负数为零,可得a、b、c的值,根据勾股定理逆定理,可得答案. 【解答】解:△ABC是等腰直角三角形. 理由:∵a2﹣4a+b2﹣4 c=4b﹣16﹣c2, ∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣4 c+8)=0, 即:(a﹣2)2+(b﹣2)2+(c﹣2 )2=0. ∵(a﹣2)2≥0,(b﹣2)2≥0,(c﹣2 )2≥0, ∴a﹣2=0,b﹣2=0,c﹣2 =0, ∴a=b=2,c=2 , ∵22+22=(2 )2, ∴a2+b2=c2, 所以△ABC是以c为斜边的等腰直角三角形. 【点评】本题考查了因式分解的应用,勾股定理逆定理,利用了非负数的和为零得出a、b、c的值是解题关键. 21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF. (1)求证:AE=AF; (2)求∠EAF的度数. 【考点】全等三角形的判定与性质;平行四边形的性质. 【分析】(1)寻找分别含有AE和AF的三角形,通过证明两三角形全等得出AE=AF. (2)在∠BAD中能找出∠EAF=∠BAD﹣(∠BAE+∠FAD),在(1)中我们证出了三角形全等,将∠FAD换成等角∠AEB即可解决. 【解答】(1)证明:∵四边形ABCD是平行四边形,并且∠BCD=120°, ∴∠BCE=∠DCF=60°,CB=DA,CD=BA,∠ABC=∠ADC, ∵CB=CE,CD=CF, ∴△BEC和△DCF都是等边三角形, ∴CB=CE=BE=DA,CD=CF=DF=BA, ∴∠ABC+∠CBE=∠ADC+∠CDF, 即:∠ABE=∠FDA 在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=DA, ∴△ABE≌△FDA (SAS), ∴AE=AF. (2)解:∵在△ABE中,∠ABE=∠ABC+∠CBE=60°+60°=120°, ∴∠BAE+∠AEB=60°, ∵∠AEB=∠FAD, ∴∠BAE+∠FAD=60°, ∵∠BAD=∠BCD=120°, ∴∠EAF=∠BAD﹣(∠BAE+∠FAD)=120°﹣60°=60°. 答:∠EAF的度数为60°. 【点评】本题考查全等三角形的判定与性质,解题的关键是寻找合适的全等三角形,通过寻找等量关系证得全等,从而得出结论. 22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索: 设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m . a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a= m2+3n2 ,b= 2mn . (2)利用所探索的结论,用完全平方式表示出: = (2+ )2 . (3)请化简: . 【考点】二次根式的性质与化简. 【专题】阅读型. 【分析】(1)利用已知直接去括号进而得出a,b的值; (2)直接利用完全平方公式,变形得出答案; (3)直接利用完全平方公式,变形化简即可. 【解答】解:(1)∵a+b =(m+n )2, ∴a+b =(m+n )2=m2+3n2+2 mn, ∴a=m2+3n2,b=2mn; 故答案为:m2+3n2;2mn; (2) =(2+ )2; 故答案为:(2+ )2; (3)∵12+6 =(3+ )2, ∴ = =3+ .
人教版八年级数学下册期末试卷及答案
八年级(下)数学期末测试卷 一、选择题(每小题3分,共30分) 1、若2y-7x=0,则x∶y等于( ) A.2∶7 B. 4∶7 C. 7∶2 D. 7∶4 2、下列多项式能因式分解的是( ) A.x2-y B.x2+1 C.x2+xy+y2 D.x2-4x+4 3、化简 的结果( ) A.x+y B.x- y C.y- x D.- x- y 4、已知:如图,下列条件中不能判断直线l1‖l2的是( ) A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 5、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有( ) A.1个 B.2个 C.3个 D.4个 6、如图,在△ABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为( ) A. B.7 C. D. (第4题图) (第6题图) 7、下列各命题中,属于假命题的是( ) A.若a-b=0,则a=b=0 B.若a-b>0,则a>b C.若a-b<0,则a<b D.若a-b≠0,则a≠b 8、如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是( ) A.a1 D.a>-1 9、在梯形ABCD中,ADBC,AC,BD相交于O,如果ADBC=13,那么下列结论正确的是( ) A.S△COD=9S△AOD B.S△ABC=9S△ACD C.S△BOC=9S△AOD D.S△DBC=9S△AOD 10、某班学生在颁奖大会上得知该班获得奖励的情况如下表: 已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( ) A.3项 B.4项 C.5项 D.6项 二、填空题(每小题3分,共24分) 11、不等式组 的解集是 ; 12、若代数式 的值等于零,则x= 13、分解因式: = 14、如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分别找出它们的中点 M、N.若测得MN=15m,则A、B两点的距离为 (第14题图) (第15题图) (第17题图) (第18题图) 15、如图,在□ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB等于 cm2. 16、一次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进行计算,李华说:我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么对于下列两个命题:①俩人的说法都是正确的,②至少有一人说错了.真命题是 (填写序号). 17、如图,下列结论:①∠A >∠ACD;②∠B+∠ACB=180°-∠A;③∠B+∠ACB∠B。 其中正确的是 (填上你认为正确的所有序号). 18、如图,在四个正方形拼接成的图形中,以 、 、 、…、 这十个点中任意三点为顶点,共能组成________个等腰直角三角形.你愿意把得到上述结论的探究方法与他人交流吗?若愿意,请在下方简要写出你的探究过程(结论正确且所写的过程敏捷合理可另加2分,但全卷总分不超过100分):______________________________________________ _______________________________________________________________________________ ______________________________________________________________________________. 三、(每小题6分,共12分) 19、解不等式组 20、已知x= ,y= ,求 的值. 四、(每小题6分,共18分) 21、为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5。 (1)第四小组的频率是__________ (2)参加这次测试的学生是_________人 (3)成绩落在哪组数据范围内的人数最多?是多少? (4)求成绩在100次以上(包括100次)的学生占测试 人数的百分率. 22、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾? 23、某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.中商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,什么情况下到甲商场购买更优惠? 五、(本题10分) 24、已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1. (1)求∠2、∠3的度数; (2)求长方形纸片ABCD的面积S.
八年级下册期末数学试题
以下是为您推荐的八年级下册期末数学试题(附答案),希望本篇文章对您学习有所帮助。 八年级下册期末数学试题(附答案) 一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内. 1.不等式的解集是() A BCD 2.如果把分式中的x和y都扩大2倍,那么分式的值() A扩大2倍B不变C缩小2倍D扩大4倍 3.若反比例函数图像经过点,则此函数图像也经过的点是() ABCD 4.在和中,,如果的周长是16,面积是12,那么的周长、面积依次为() A8,3 B8,6 C4,3 D4,6 5.下列命题中的假命题是() A互余两角的和是90°B全等三角形的面积相等 C相等的角是对顶角D两直线平行,同旁内角互补 6.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面, 则钥匙藏在黑色瓷砖下面的概率是() A B C D 7.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是() ABCD 8.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC, AD=4,AB=5,BC=6,点P是AB上一个动点, 当PC+PD的和最小时,PB的长为() A1B2C2.5D3 二、填空题(每小题3分,共30分)将答案填写在答题卡相应的横线上. 9、函数y=中,自变量的取值范围是. 10.在比例尺为1∶500000的中国地图上,量得江都市与扬州市相距4厘米,那么江都市与扬州市两地的实际相距千米. 11.如图1,,,垂足为.若,则度. 12.如图2,是的边上一点,请你添加一个条件:,使. 13.写出命题“平行四边形的对角线互相平分”的逆命题:_______________ __________________________________________________________. 14.已知、、三条线段,其中,若线段是线段、的比例中项, 则=. 15.若不等式组的解集是,则. 16.如果分式方程无解,则m=. 17.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为. 18.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为. 三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤. 19.(8分)解不等式组,并把解集在数轴上表示出来. 20.(8分)解方程: 21.(8分)先化简,再求值:,其中. 22.(8分)如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,-1)、C(2,1). (1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′(,),C′(,); (2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标(,). 23.(10分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF. 能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB=ED; ②BC=EF; ③∠ACB=∠DFE. 24.(10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y). (1)用列表或画树状图的方法写出点Q的所有可能坐标; (2)求点Q落在直线y=上的`概率. 25.(10分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1. (1)求反比例函数和一次函数的解析式; (2)若一次函数的图象与x轴相交于点C,求∠ACO的度数; (3)结合图象直接写出:当>>0时,x的取值范围. 26.(10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=,CE=,CA=(点A、E、C在同一直线上). 已知小明的身高EF是,请你帮小明求出楼高AB. 27.(12分)某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据: A(单位:千克)B(单位:千克) 甲93 乙410 (1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围; (2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额. 28.(12分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n (1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似; (2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围; (3)以ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).旋转AFG,使得BD=CE,求出D点的坐标,并通过计算验证; (4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由. 八年级数学参考答案 一、选择题(本大题共8小题,每小题3分,共24分) 题号12345678 答案DBDACCAD 二、填空题(本大题共10小题,每题3分,共30分) 9、x≠110、2011、4012、或或 13、对角线互相平分的四边形是平行四边形。14、415、-1 16、-117、18、 三、解答题:(本大题有8题,共96分) 19、解:解不等式①,得.……………………………………2分 解不等式②,得.……………………………………4分 原不等式组的解集为.…………………………………6分 在数轴上表示如下:略……………………………………8分 20、解:方程两边同乘得…………4分 解得…………7分 经检验是原方程的根…………8分 21.解:原式=2分 =4分 =6分 当时,上式=-28分 22.(1)图略(2分),B’(-6,2),C’(-4,-2)6分 (2)M′(-2x,-2y)8分 23.解:由上面两条件不能证明AB//ED.………………………………………1分 有两种添加方法. 第一种:FB=CE,AC=DF添加①AB=ED…………………………………………3分 证明:因为FB=CE,所以BC=EF,又AC=EF,AB=ED,所以△ABC≌△DEF 所以∠ABC=∠DEF所以AB//ED……………………………………………10分 第二种:FB=CE,AC=DF添加③∠ACB=∠DFE………………………3分 证明:因为FB=CE,所以BC=EF,又∠ACB=∠DFEAC=EF,所以△ABC≌△DEF 所以∠ABC=∠DEF所以AB//ED…………………………………………………10分 24.解(1) B A-2-3-4 1(1,-2)(1,-3)(1,-4) 2(2,-2)(2,-3)(2,-4) (两图选其一) ……………4分(对1个得1′;对2个或3个,得2′;对4个或5个得3′;全对得4′) (2)落在直线y=上的点Q有:(1,-3);(2,-4)8分 ∴P==10分 25.(1)y=,y=x+14分(答对一个解析式得2分) (2)457分 (3)x>110分 26.解:过点D作DG⊥AB,分别交AB、EF于点G、H, 则EH=AG=CD=1,DH=CE=0.8,DG=CA=40, ∵EF∥AB, ∴, 由题意,知FH=EF-EH=1.6-1=0.6, ∴, 解得BG=30,…………………………………………8分 ∴AB=BG+AG=30+1=31. ∴楼高AB为31米.…………………………………………10分 27.解:(1)由题意得3分 解不等式组得6分 (2)8分 ∵,∴。 ∵,且x为整数, ∴当x=32时,11分 此时50-x=18,生产甲种产品32件,乙种产品18件。12分 28、解:(1)ABE∽DAE,ABE∽DCA1分 ∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA又∠B=∠C=45° ∴ABE∽DCA3分 (2)∵ABE∽DCA∴由依题意可知 ∴5分 自变量n的取值范围为6分 (3)由BD=CE可得BE=CD,即m=n∵∴∵OB=OC=BC=8分 9分 (4)成立10分 证明:如图,将ACE绕点A顺时针旋转90°至ABH的位置,则CE=HB,AE=AH, ∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在EAD和HAD中 ∵AE=AH,∠HAD=∠EAH-∠FAG=45°=∠EAD,AD=AD.∴EAD≌HAD ∴DH=DE又∠HBD=∠ABH+∠ABD=90° ∴BD+HB=DH即BD+CE=DE12分