局部放电检测仪怎么检测局部放电?
SPR-JF-Ⅰ型开关柜局部放电在线监测系统是一套用于探测、分析和连续监测高压开关柜局部放电信号的在线监测装置,适用于各型号10KV及35KV开关柜。系统由系统主机及局放探测传感器组成,系统主机用于处理由局放探测传感器获取的局放信号,并对局放信号进行筛选,完成局放信号的数值记录、分析判断、报警等功能。 二、技术参数工作电源电压 110~264VAC、155~370VDC 额定功率 ≤3W 工作环境温度 -20℃-60℃ 测量频率范围 2.6GHz~5GHz 测量灵敏度 -60dBm 测量响应时间 <10S 测量范围 -60dBm~0dBm 报警门限设定 -40dBm~0dBm(调整间隔1dBm) 报警门限默认值 -20 dBm 外形尺寸 115*72*60mm 安装位置 开关柜线缆室 安装方式 支架安装 通讯接口 RS485 三、产品结构结构示意图系统示意图三、产品特点1、连续采样提取有效局放信号,过程不间断。2、可查询比对历史数据,自动识别放电强度及危害。可使用手机APP读取局放数据。3、局放传感器宽低噪声、高灵敏度、大动态范围、数字化。4、体积小重量轻,安装时不影响现有设备,安装方便。5、传感器安装于开关柜内部,其内部电磁信号易于接收,外部干扰几乎被屏蔽,灵敏度高。五、产品优势1、为开关柜提供不间断的实时状况监测;2、预诊断告警,防止故障性灾难的发生,降低或避免损失;3、设备和系统使用寿命增加,可用率提高;4、降低维护成本,降低故障率,减少设备停运时间。
局部放电的检测方法有哪些?
局部放电的检测方法有哪些?一、电气测量方法局部放电最直接的现象是电极之间的电荷运动。每一次局部放电都伴随着一定量的电荷通过电介质,引起样品外电极上的电压变化。此外,每次放电过程的持续时间很短,空气间隙中的一次放电过程在10ns量级。根据电磁理论,持续时间如此短的放电脉冲会产生高频电磁信号向外辐射。局部放电检测仪(又称局部放电检测仪)的电气检测方法就是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法和介质损耗分析法。1.脉冲电流法脉冲电流法是应用最广泛的局部放电测试方法,脉冲电流法的基本测量电路如图所示。图中,C表示样本电容,Zm(Zm)表示测量阻抗,Ck表示耦合电容。其功能是在Cx和Zm之间提供一个低阻抗通道。z代表连接在电源和测量电路之间的低通滤波器。z可以使工频电压作用在样品上,但阻止被测高频脉冲或电源中的高频分量通过。2.无线电干扰电压法(RIV)无线电干扰电压法,包括射频检测法,可以通过无线电干扰电压表检测局部放电的发生。目前,国外仍采用无线电干扰电压表来检测局部放电。在我国,检测局部放电一般采用射频传感器,所以也叫射频检测法。与常用的射频传感器相比,有电容传感器、线圈电流传感器和射频天线传感器。无线电干扰电压法可以定性检测是否发生局部放电,甚至可以根据电磁信号的强弱对电机线棒和无屏蔽层的长电缆进行局部放电定位。线圈传感器还可以定量检测放电强度,测试频带较宽(1~30MHz)。3.介电损耗分析(DLA)局部放电对绝缘材料的损害与局部放电所消耗的能量直接相关。局部放电现象会导致电介质的损坏,使tgδ大大增加。因此,可以通过测量tgδ的值来测量局部放电能量,从而判断绝缘材料和结构的性能。介质损耗分析法特别适用于测量低气压下的辉光或亚辉光放电。由于辉光放电不产生放电脉冲信号,而且亚辉光放电的脉冲上升时间过长,用普通的脉冲电流法很难检测出来。但是这种放电消耗的能量很大,使得tgδ很大。所以这种放电的状态和危害只能用电桥法来判断。DLA法只能定性测量局部放电是否发生,而基本不能检测局部放电量,限制了DLA法的应用。二、非电量检测方法1.局部放电的超声波检测超声波检测技术用于确定局部放电的位置和程度。这种方法简单,不受环境条件限制,但灵敏度低,不能直接定量。超声波测量方法通常用于确定放电位置,并作为电气测量方法的补充。而声学测量法有其独特的优势,即可以在样品外壳表面任何不带电的部位放置传感器,并能准确确定放电位置。而且接收到的信号与系统的电源没有电连接,不会受到电源系统电信号的干扰。因此,在进行局部放电测量时,同时使用电测法和声学测量法,两种方法优势互补,结合一些信号处理和分析方法,可以获得良好的测量效果。2.光检测方法对于绝缘中的局部放电,只有透明介质适合于光检测。例如聚乙烯绝缘电缆芯线用光电倍增管扫描水介质进行观察,但这种方法灵敏度低,局限性大,更适合检测暴露在外表面的电晕放电。3.热检测方法因为局部放电会在放电点产生热量。断层严重时,局部热效应明显。可以通过预先嵌入的热电偶测量每个点的温升,以确定局部放电位置。这种方法既不灵敏也不能定量,所以一般不用于野外测量。4.放电产物分析方法油绝缘材料在局部放电作用下会分解产生各种气体。分析了局部放电过程中产生的化学产物。比如用色谱分析仪测量高压电气设备油中因放电产生的微量可燃气体,从而推断局部放电的程度,判断故障类型。当绝缘有局部放电时,当放电较小,故障点引起的温度比正常温度高不了多少时,油裂解的产物主要是甲烷和氢气。当局部放电故障扩大,形成局部爬电或火花或电弧放电时,会引起局部高温,产生乙炔、乙烯、一氧化碳和二氧化碳。如使用四种特征气体的三比值法。可以用来判断变压器故障的性质,但实际上判断电力设备绝缘故障时,仅用一个测量数据往往是不够的。最好采用色谱分析,观察有害气体随时间的增量,并与局部放电超声波测量和电测数据进行对比,进行综合判断,从而更有效地判断故障性质。当故障涉及固体绝缘时,一氧化碳和二氧化碳的含量会明显增加。但根据现有的统计,固体绝缘的正常老化过程和故障情况下的劣化分解都表现在油中一氧化碳的含量上。一般没有严格的限制,二氧化碳含量的规律就更不明显了。因此,在考察这两种气体的含量时,应更多地关注具体变压器的结构特点。例如油保护模式、操作温度、负载条件、操作历史等。,以便尽可能得出正确的结论。