运筹学中怎么从单纯形表中看出对偶问题的最优解
根据互补松弛性很易得出对偶问题的最优解,将原问题的最优解依次代入原问题的约束条件,如容果约束条件为严格不等式则说明对偶问题的该变量非零,如果为不等式则说明对偶问题中该变量为0,把对偶问题写出来,将为0的变量代入可以求出其余的变量。对偶问题的最优解就是原问题松弛变量的检验数的相反数。可以直接读出,根据互补松弛。或者你可以根据原问题写出对偶问题,然后用单纯形法求最优解。扩展资料:对偶问题的最优解:对偶问题的最优解可以直接从原问题的最终单纯形表(最优单纯形算子)中得到。原问题中松弛变量的检验次数对应对偶问题的解(符号相反)。使用单纯形法时,迭代的每一步都可以得到原问题的可行解x0和对偶问题的补充解y0,且cx0=y0b。如果X0不是原问题的最优解,那么y0也不是对偶问题的可行解。在最后一次迭代中,得到原问题的最优解x*和对偶问题的互补最优解y*,且cx*=y*b。Y *是原问题的影子价格。利用拉格朗日函数将原约束问题转化为无约束问题。如果原问题难以求解,在满足KKT的条件下,改用对偶问题求解原问题,使问题求解更加容易。参考资料来源:百度百科-对偶理论
运筹学已知原问题的最有解怎么求对偶问题的最优解
根据互补松弛性很容易得出对偶问题的最优解,将原问题的最优解依次代入原问题的约束条件,如果约束条件为严格不等式则说明对偶问题的该变量非零,如果为不等式则说明对偶问题中该变量为0,把对偶问题写出来,将为0的变量代入可以求出其余的变量。对偶问题的最优解就是原问题松弛变量的检验数的相反数。可以直接读出,根据互补松弛。或者你可以根据原问题写出对偶问题,然后用单纯形法求最优解。扩展资料:对偶问题的最优解:从原始问题的最终单纯形表中(最优单纯形算子)可直接得到对偶问题的最优解。原始问题中松弛变量的检验数对应着对偶问题的解(符号相反)。在用单纯形法时每一步迭代可得到原始问题的可行解x0和对偶问题的补充解y0且cx0=y0b,若x0不是原始问题的最优解,y0就不是对偶问题的可行解。最后一步迭代得到原始问题的最优解x*和对偶问题的补充最优解y*,且cx*=y*b。y*是原始问题的影子价格。把原始的约束问题通过拉格朗日函数转化为无约束问题,如果原始问题求解棘手,在满足KKT的条件下用求解对偶问题来代替求解原始问题,使得问题求解更加容易。参考资料来源:百度百科-对偶理论
运筹学单纯形法中,为什么检验数小于等于零才有最优解??
因为基本可行解的个数有限,故经有限次转换必能得出问题的最优解。
从线性方程组找出一个个的单纯形,每一个单纯形可以求得一组解,然后再判断该解使目标函数值是增大还是变小了,决定下一步选择的单纯形。通过优化迭代,直到目标函数实现最大或最小值。
如果线性问题存在最优解,一定有一个基可行解是有最优解。因此单纯形法迭代的基本思路是:先找出一个基可行解,判断其是否为最优解。如为否,则转换到相邻的基可行解,并使目标函数值不断增大,一直找到最优解为止。
扩展资料:
由于目标函数和约束条件内容和形式上的差别,线性规划问题可以有多种表达式。因此,为了便于讨论和制定统一的算法,在制定单纯形法时,规定使用单纯形法求解的线性规划问题需要有一个标准形式,它有下面三个特征:
(1)
标准形式目标函数统一为求极大值或极小值,但单纯形法主要用来求解极大值;
(2)
所有约束条件(除非负条件外)都是等式,约束条件右端常数项bi全为非负值;
(3)
所有变量的取值全为非负值。
运筹学单纯形法中,为什么检验数小于等于零才有最优解??
因为基本可行解的个数有限,故经有限次转换必能得出问题的最优解。从线性方程组找出一个个的单纯形,每一个单纯形可以求得一组解,然后再判断该解使目标函数值是增大还是变小了,决定下一步选择的单纯形。通过优化迭代,直到目标函数实现最大或最小值。如果线性问题存在最优解,一定有一个基可行解是有最优解。因此单纯形法迭代的基本思路是:先找出一个基可行解,判断其是否为最优解。如为否,则转换到相邻的基可行解,并使目标函数值不断增大,一直找到最优解为止。扩展资料:由于目标函数和约束条件内容和形式上的差别,线性规划问题可以有多种表达式。因此,为了便于讨论和制定统一的算法,在制定单纯形法时,规定使用单纯形法求解的线性规划问题需要有一个标准形式,它有下面三个特征:(1) 标准形式目标函数统一为求极大值或极小值,但单纯形法主要用来求解极大值;(2) 所有约束条件(除非负条件外)都是等式,约束条件右端常数项bi全为非负值;(3) 所有变量的取值全为非负值。