人工智能的应用领域有哪些?
人工智能的应用领域有哪些?
人工智能主要应用领域
1、农业:农业中已经用到很多的AI技术,无人机喷撒农药,除草,农作物状态实时监控,物料采购,数据收集,灌溉,收获,销售等。通过应用人工智能设备终端等,大大提高了农牧业的产量,大大减少了许多人工成本和时间成本。
2、通信:智能外呼系统,客户数据处理(订单管理系统),通信故障排除,病毒拦截(360等),骚扰信息拦截等
3、医疗:利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。例:健康监测(智能穿戴设备)、自动提示用药时间、服用禁忌、剩余药量等的智能服药系统。
4、社会治安:安防监控(数据实时联网,公安系统可以实时进行数据调查分析)、电信诈骗数据锁定、犯罪分子抓捕、消防抢险领域(灭火、人员救助、特殊区域作业)等
5、交通领域:航线规划、无人驾驶汽车、超速、行车不规范等行为整治
6、服务业:餐饮行业(点餐、传菜,回收餐具,清洗)等,订票系统(酒店、车票、机票等)的查询、预定、修改、提醒等
7、金融行业:股票证券的大数据分析、行业走势分析、投资风险预估等
8、大数据处理:天气查询,地图导航,资料查询,信息推广(推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。),个人助理
人工智能的应用领域有哪些?
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 人工智能产品有哪些人工智能一般是作为辅助人类工作的工具出现的,扫地机器人、医疗机器人、服务员机器人等是最常见的人工智能形态。事实上,人工智能并不只有机器人一种形态,从领域上来看,包括机器人、语言识别、图像识别、自然语言处理和专家系统等。今天我们就来看下,除了机器人,人工智能的产品还有哪些。谷歌人工智能项目DeepMind谷歌位于伦敦的研发部门DeepMind已经开发出能够自主玩视频游戏的人工智能技术。以DeepMind技术为基础的计算机系统,能以惊人的速度学习,快速掌握游戏玩法,精通游戏获胜方法。此前,团队称之为深度Q-network学习网络,仅需观察游戏画面以及游戏得分的变化情况,即可分析获得“通关技巧”以及获得高分的玩法及算法,能够达到专业级人类玩家的水平。目前这个系统在相同算法,网络架构以及参数的设定下已经经过49个游戏的测试,目前已经能够熟练22种游戏(包括上述的Space Invaders),达到专家级的游戏水平。这套系统进一步证明人工智能可以通过深度学习,从而掌握游戏技巧,并获得和人类一样的操控力,甚至在某些方面超过人类。IBM Watson去年,IBM发布了Watson Analytics。Watson Analytics实现了基于自然语言的认知服务,可以为商务人士即时提供预测和可视化分析工具。Watson Analytics将于本年末推出基于云服务的免费增值应用版本(Freemium Version),可在电脑及移动设备上使用。Watson Analytics可提供自助式分析功能,包括数据访问、数据清洗、数据仓库,帮助企业用户获取和准备数据,并基于此进行分析、实现结果可视化,为使用者采取有效行动和开展进一步交互提供基础和便利。微软人工智能Torque中文版今年2月份,微软发布了一款为安卓平台的中国用户度身打造、以手势驱动并语音交互的人工智能产品Torque中文版。作为微软在安卓平台上的首个人工智能产品,同时也是微软首个针对可穿戴设备的中文产品,Torque的目标是用最小的界面把信息的传递做到最直接、最及时。Torque的诞生解放了安卓用户的双手,用户只需要轻轻摇动手腕,然后对它说:“快乐大本营主持人”,“最近的肯德基在哪”,“打电话给张勇”等指令,就能体验以极简的动作轻松得到信息和完成更多任务——这也正是微软对移动互联时代,移动生产力和效率的理解。据微软表示,Torque和小冰、小娜等微软人工智能产品一样,都采用了必应大数据平台作为底层引擎,用来处理每个用户通过手机和移动互联网上传到云里的语音命令;而微软(亚洲)互联网工程院的人工智能产品团队,针对中国用户的偏好和习惯,在功能上做了特殊设计和本地化开发。Youtube自动字幕2009年时Google便已经利用他们的语音识别技术,在YouTube上提供实时的「自动字幕(Automatic Captions)」功能,除了让用户可以在避免干扰到他人以不开启喇叭的状况下,观赏网络上成千上万的各种影片内容。YouTube调用Google的自动语音识别技术(ASR)给YouTube视频加入字幕,这个技术来自于Google Voice。当然生成的字幕不可能100%准确,但起码可以帮助你提高听力来理解视频内容,而且Google会一直改进自动语音识别技术的。这项技术支持英语、日语、韩语、西班牙语、德语、意大利语、法语、葡萄牙语、俄语、荷兰的自动字幕。除了自动字幕功能以外,YouTube还针对给视频制作字幕的朋友添加了字幕时间和自动时间的功能,使大家可以更轻松的自己动手做字幕。你只需要创建一个简单的文本文件,里面写上所有视频里说的单词,然后Google利用自动语音识别技术可以将文本里的这些话与自己识别出的话做对应,这样准确率就提高了,而且你还不必花太多时间去一句一句的配字幕。人工智能仿生眼英国曼彻斯特皇家眼科医院已经成功实施了世界首例人工仿生机器眼移植治疗老年性视网膜黄斑变性(AMD)所导致失明的手术。这个人工智能仿生眼装置被称为Argus II,由两部分组成:体内植入部分和体外病人必须穿戴的部分。植入设备将植入到病人的视网膜上,设备中含有电极阵列,电池和一个无线天线。外部设备包含一副眼镜,内置前向的摄像头和无线电发射器以及一个视频处理单元。摄像头会捕捉到植入体正对面的画面,将信号发送到视频处理器上等待处理。经处理后的信号又被发送回眼镜上,信号通过眼镜被植入设备的天线所接收。最终,视频被“输出”到电极阵列上,电极阵列起到视神经模拟的作用。电极阵列的分辨率达到60像素水平,这已经足够让植入设备追踪物体运动的轨迹,看清基本的图案和形状,或者缓慢阅读较大的文字。Argus II所提供的画面是黑白的,但Argus的开发团队正在努力对电极大脑刺激进行编译,希望尽快能让大脑接收彩色信号。患者在手术后,恢复后已经能够识别出垂直或水平的线条,能够辨识出人脸,不需要放大镜阅读报纸。更有趣的是,通过这项手术,患者即使闭上眼睛也能够看到眼睛的景象,这就让人感到有一些有趣了。此外,美国开发人工智能眼球的公司--第二视觉公司开发的人工智能眼球也已获准上市,该产品可以让完全失明的盲人重新恢复视力。 新闻写作机器人美联社去年夏天起用Wordsmith平台自动撰写财经新闻。按照美联社商业新闻主管Lou Ferrara的说法,采用基于算法的机器新闻写作后,在无须增加新的人手的情况下,美联社的商业新闻中关于企业季度经营状况的报道量,将增加10多倍,即从原先每季度300篇上升到4400篇,而与此同时将能把之前用于此类报道的记者“解放”出来,让其可以从事更具有创造性和挑战性的新闻策划和新闻源拓展工作。该系统刚上线时,尚需由人工审稿并对平台加以调整,三个月后已完全不需要人为干预。康奈尔大学开发的鸟脸识别技术康奈尔大学与VIsipedia研究计划小组共同开发了Merlin Bird Photo ID软件,可以借助计算机视觉识别技术和深度机器学习来识别各种图片中出现的鸟类种类。这对于入门的赏鸟人士和鸟类爱好者来说,是个非常不错的软件。通过深度机器学习,这个程序能够在数秒内提供识别结果,前三种识别结果准确率已经达到了90%以上。用户可以通过上传不知道种类的鸟类图片,并且用方框框出需要识别的鸟类图像缩小识别范围。软件能够从数万张图片中指出已知种类的鸟,目前数据库已经包含在北美常见的400多种鸟类。随着用户使用次数,和深度机器学习,准确度会日渐提高。康奈尔大学的教授Serge Belongie说:“计算机可以比人类更有效地处理图片,它们能够分类、建立索引、处理大量的图形细节特征来识别结果”。Skype实时翻译工具微软的实时翻译工具Skype Translator将语音识别技术和微软所谓的“深度神经网络及微软已得到证明的静态机器翻译技术”结合在一起。能自动翻译不同语言的语音通话和即时通信消息。目前支持英语、西班牙语、意大利语和汉语普通话。此外,即时通信消息的翻译已支持50种语言,包括法语、日语、阿拉伯语、威尔士语,甚至克林贡语。由于这款翻译工具集成了机器翻译、语音识别、机器学习、大数据等先进技术,因此被广泛看好。据了解,Skype中文实时口译所需的语音识别技术,由微软中国和美国的研究人员联合开发。人工智能所涉及的范围人工智能涉及的学科比较多,生活中的方方面面都有人工智能的实际应用, 主要涉及哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学等学科研究范畴 :自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法 人类思维方式应用领域: 智能控制,专家系统,机器人学,语言和图像理解,遗传编程 机器人工厂实际应用 :机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等.
人工智能的应用领域有哪些?
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能应用领域有哪些?
人工智能的主要应用领域有:1.强化学习领域;2.生成模型字段;3.内存网络领域;4.数据学习领域;5.模拟环境领域;6.医疗技术领域;7.教育领域;8.物流管理领域。
1.加强学习领域
强化学习是一种通过实验和错误进行学习的方法,它受到人类学习新技能过程的启发。在强化学习的典型案例中,我们要求参与者采取行动,通过观察当前情况来最大化反馈结果。每次你执行一个动作,实验者都会收到环境的反馈,所以它可以判断这个动作的效果是积极的还是消极的。
2.生成模型字段
通过大量样本的收集,人工智能生成的模型具有很强的相似性。也就是说,如果训练数据是人脸的图像,那么训练后得到的模型也是类似人脸的合成图像。
人工智能顶级专家Ian Goodfellow为我们提出了两个新思路:一个是生成器,负责将输入的数据合成新的内容;另一个是鉴别器,负责判断生成器生成的内容是真是假。这样,生成器必须反复学习合成的内容,直到鉴别器无法辨别生成器内容的真实性。
3.存储网络字段
人工智能系统要像人类一样适应各种环境,就必须不断掌握新的技能并学会应用。传统的神经网络很难满足这些要求。比如一个神经网络训练完A任务后,如果训练它去解决B任务,那么这个网络模型就不再适合A了。
目前有一些网络结构可以使模型具有不同程度的记忆能力。长短期记忆网络可以处理和预测时间序列;渐进神经网络学习独立模型之间的水平关系,提取共同特征,可以完成新的任务。
4.数据学习领域
一直以来,深度学习模式都是需要大量的训练数据才能达到最好的效果。没有大规模的训练数据,深度学习模型不会取得最好的效果。例如,当我们使用人工智能系统解决缺乏数据的任务时,会出现各种问题。有一种方法叫迁移学习,就是把训练好的模型转移到一个新的任务上,这样问题就很容易解决了。
5.仿真环境领域
如果人工智能系统要应用于现实生活,那么人工智能必须具有适用性的特点。因此,开发模拟真实物理世界和行为的数字环境,将为我们提供检验人工智能的机会。在这些仿真环境中进行训练,可以帮助我们很好地理解人工智能系统的学习原理以及如何改进系统,也为我们提供了一个可以应用到真实环境中的模型。
6.医疗技术领域
目前垂直领域的图像算法和自然语言处理技术基本能够满足医疗行业的需求,市场上已经出现了很多技术服务商,比如提供智能医学影像技术的尚德云星、开发人工智能细胞识别医疗诊断系统的智维信分公司、提供智能辅助诊断服务平台的若水医疗、统计处理医疗数据的一通天下等。虽然智能医疗在辅助诊疗、疾病预测、医学影像辅助诊断、药物开发等方面发挥着重要作用。由于医院之间缺乏医学影像数据和电子病历的流通,企业与医院之间的合作不透明,这就使得技术发展与数据供给之间产生矛盾。
7.教育领域
科大讯飞、学校教育等企业已经开始探索人工智能在教育领域的应用。通过图像识别,可以进行试卷批改、识题、机器答题等。通过语音识别可以纠正和改善发音;人机交互可以在线回答问题。AI+教育,可以在一定程度上改善教育行业师资分布以及成本问题,从工具层面为师生提供更高效的学习方式,但无法对教育内容产生更实质性的影响。
8.物流管理领域
物流行业利用智能搜索、推理规划、计算机视觉、智能机器人等技术,在配送、装卸、运输、仓储等过程中进行了自动化改造,基本可以实现无人化作业。比如利用大数据对商品进行智能配送规划,优化物流供给、需求匹配、物流资源的配置等。