黑洞是怎样出现的
黑洞是由质量足够大的恒星在核聚变反应的燃料耗尽而死亡后,发生引力坍缩产生的。根据广义相对论,当一个物体的质量大到引力无法抵抗时,就会发生引力坍缩,形成黑洞。
具体来说,当一颗恒星的质量增加到一定程度时,它的引力场就无法维持住自身的形态,开始向内坍缩。在坍缩的过程中,恒星的物质开始变得更加致密和紧密,导致其中的时空也变得更加扭曲。当恒星的质量小于某个临界值时,引力坍缩会逐渐减慢,直到停止。此时,如果恒星的质量大于临界值,那么它就会继续坍缩,最终形成一个无法再被拉伸的极度密集的物质区域,即黑洞。
黑洞是一种极度致密的天体,其密度极高,重力极强,甚至连光也无法从其中逃脱。根据理论预测,黑洞的半径约为3×10^{16}米,质量约为3×10^{24}千克,温度高达数百万摄氏度。
黑洞是宇宙中最为神秘和危险的天体之一,其性质和特点仍然是天文学家们不断探索和研究的热点问题。
黑洞是谁发现的?
黑洞是先由爱因斯坦在1915年的“广义相对论”中提出假设:一定质量的天体将会对其周围的物质产生影响而使得它们产生“弯曲”。次年,德国天文学家卡尔·史瓦西对爱因斯坦的假设推算并将这样的天体命名为“黑洞”。黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因黑洞引力带来的加速度导致的摩擦而放出x射线和γ射线的“边缘讯息”,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹,还可以取得位置以及质量。扩展资料黑洞的形成过程和特点1、形成过程一个超大质量的恒星(或其他星体)的中心坍塌后,该核心被无限制地压缩,形成一个质量无限大而体积却无限小(也许只有几千米)的天体,这个天体就是“黑洞”。2、特点引力超强大,即使光经过黑洞周围,也会被其吸入而无法逃脱出黑洞。因此,黑洞存在宇宙的某处,但无法被观测到。在黑洞中,所有时间、空间以及物理定理都会失效。因此,黑洞又被推测可能是另一个宇宙空间的存在。参考资料来源:百度百科—黑洞
神奇的黑洞
黑洞是一种引力极强的天体,就连光也不能逃脱.当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了.这时恒星就变成了黑洞.说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出.由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞.然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在.黑洞引申义为无法摆脱的境遇.2011年12月,天文学家首次观测到黑洞“捕捉”星云的过程
黑洞[1][2]的产生过程类似于中子星的产生过程;恒星的核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸.当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间.但在黑洞[3]情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质.由于高质量而产生的力量,使得 黑洞
任何靠近它的物体都会被它吸进去.黑洞开始吞噬恒星的外壳,但黑洞并不能吞噬如此多的物质,黑洞会释放一部分物质,射出两道纯能量——伽马射线. 也可以简单理通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变.由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定.由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素.接着,氦原子也参与聚变,改变结构,生成锂元素.如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成.直至铁元素生成,该恒星便会坍塌.这是由于铁元素相当稳定不能参与聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞.说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,就再不能逃出.跟白矮星和中子星一样,黑洞可能也是由质量大于太阳质量好几倍以上的恒星演化而来的. 当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了.这样,它再也没有足够的力量来承担起外壳巨大的重量.所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积无限小、密度无限大的星体.而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”诞生了.
恒星的时空扭曲改变了光线的路径,使之和原先没有恒星情况下的路径不一样.光在恒星表面附近稍微向内偏 黑洞
折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象.当该恒星向内坍塌时,其质量导致的时空扭曲变得很强,光线向内偏折得也更强,从而使得光线从恒星逃逸变得更为困难.对于在远处的观察者而言,光线变得更黯淡更红.最后,当这恒星收缩到某一临界半径(史瓦西半径)时,其质量导致的时空扭曲变得如此之强,使得光向内偏折得这么也如此之强,以至于光线再也逃逸不出去 .这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被拉回去.也就是说,存在一个事件的集合或时空区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者,这样的区域称作黑洞.将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合.
黑洞图片(20张) 与别的天体相比,黑洞十分特殊.人们无法直接观察到它,科学家也只能对它内部结构提出各种猜想.而使得黑洞把自己隐藏起来的的原因即是弯曲的时空.根据广义相对论,时空会在引力场作用下弯曲.这时候,光虽然仍然沿任意两点间的最短光程传播,但相对而言它已弯曲.在经过大密度的天体时,时空会弯曲,光也就偏离了原来的方向. 在地球上,由于引力场作用很小,时空的扭曲是微乎其微的.而在黑洞周围,时空的这种变形非常大.这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球.观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术. 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球.这样我们不仅能看见这颗恒星的“脸”,还同时看到它的“侧面”、甚至“后背”,这是宇宙中的“引力透镜”效应.
1.巨型黑洞 宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞.这些黑洞质量大小不一,从约100万个太阳质量到大约100亿个太阳质量. 天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在.物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射.黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式. 这项最新的研究采用了全世界最先进的地基观测设施,包括位于美国夏威夷莫纳克亚山顶,海拔4000多米处的北双子座望远镜,位于智利帕拉那山的南双子座望远镜,以及位于美国新墨西哥州圣阿古斯丁平原上的甚大阵射电望远镜. 2.大质量黑洞的成长 观测结果显示,出现在宇宙年龄仅为12亿年时的活跃黑洞,其质量要比稍后出现的大部分大质量黑洞质量小10倍.但是它们的成长速度非常快,因而现在它们的质量要比后者大得多.通过对这种成长速度的测算,研究人员可以估算出这些黑洞天体之前和之后的发展路径. 该研究小组发现,那些最古老的黑洞,即那些在宇宙年龄仅为数亿年时便开始进入全面成长期的黑洞,它们的质量仅为太阳的100到1000倍.研究人员认为这些黑洞的形成和演化可能和宇宙中最早的恒星有关. 天文学家们还注意到,在最初的12亿年后,这些被观测的黑洞天体的成长期仅仅持续了1亿到两亿年. 这项研究是一个已持续7年的研究计划的成果.特拉维夫大学主持的这项研究旨在追踪研究宇宙中最大质量黑洞的演化,并观察它们对宿主星系产生的影响. 3.黑洞的好处(别认为他只会是破坏者) 在用天文仪器探究后,发现在银河系核心部,有上10个黑洞,所产生的引力不堪设想,它们的能量相当大,可以产生一种能量束,产生一种气体,经数十亿年之后,便形成了星云,由星云便产生了行星. 4.已知最大的黑洞 美国加州大学伯克利分校华裔天文学家马中佩带领一个科研小组,最近发现了科学界迄今所知最大的两个黑洞.它们分别位于NGC 3842和NGC 4889星系,属银河系的中心地带,距离地球约2.7万光年,每个质量约为太阳的100亿倍.
什么是黑洞神秘的黑洞
分类: 教育/科学 >> 科学技术
解析:
黑洞是密度超大的星球,吸纳一切,光也逃不了.
(现在有科学家分析,宇宙中不存在黑洞,这需要进一步的证明,但是我们在学术上可以存在不同的意见)
首先,对黑洞进行一下形象的说明:
黑洞有巨大的引力,连光都被它吸引.黑洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。
再从物理学观点来解释一下:
黑洞其实也是个星球(类似星球),只不过它的密度非常非常大, 靠近它的物体都被它的引力所约束(就好像人在地球上没有飞走一样),不管用多大的速度都无法脱离。对于地球来说,以第二宇宙速度(11.2km/s)来飞行就可以逃离地球,但是对于黑洞来说,它的第三宇宙速度之大,竟然超越了光速,所以连光都跑不出来,于是射进去的光没有反射回来,我们的眼睛就看不到任何东西,只是黑色一片。
因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里?
黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样
为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。
让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。
爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。
同样的道理,宇宙中的大质量物体会使宇宙结构发生畸变。正如10块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害得多。
如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方 ,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。
现在再来看看黑洞对于其周围的时空区域的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面发生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。
现在我们来看看为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。
我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。
处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。
我们都知道因为黑洞不能反射光,所以看患T谖颐堑哪院V泻诙纯赡苁且T抖制岷诘摹5⒐锢硌Ъ一艚鹑衔诙床⒉蝗绱蠖嗍讼胂笾心茄凇Mü蒲Ъ业墓鄄猓诙粗芪Т嬖诜洌液芸赡芾醋杂诤诙矗簿褪撬担诙纯赡懿⒚挥邢胂笾心茄凇?
霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子发生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。
霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。
所以,引用霍金的话就是“黑洞并没有想象中的那样黑”,它实际上还发散出大量的光子。
根据爱因斯坦的能量与质量守恒定律。当物体失去能量时,同时也会失去质量。黑洞同样遵从能量与质量守恒定律,当黑洞失去能量时,黑洞也就不存在了。霍金预言,黑洞消失的一瞬间会产生剧烈的爆炸,释放出的能量相当于数百万颗氢弹的能量。
但你不要满怀期望地抬起头,以为会看到一场烟花表演。事实上,黑洞爆炸后,释放的能量非常大,很有可能对身体是有害的。而且,能量释放的时间也非常长,有的会超过100亿至200亿年,比我们宇宙的历史还长,而彻底散尽能量则需要数万亿年的时间
“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。
根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。
等恒星的半径小于一特定值(天文学上叫“施瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指任何物质一旦掉进去,就再不能逃出,包括光。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。
那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。
在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。
更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!
“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。
按组成来划分,黑洞可以分为两大类。一是暗能量黑洞,二是物理黑洞。暗能量黑洞主要由高速旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量以接近光速的速度旋转,其内部产生巨大的负压以吞噬物体,从而形成黑洞,详情请看宇“宙黑洞论”。暗能量黑洞是星系形成的基础,也是星团、星系团形成的基础。物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,我们称之为奇点黑洞。暗能量黑洞的体积很大,可以有太阳系那般大。但物理黑洞的体积却非常小,它可以缩小到一个奇点。
黑洞吸积
Ramesh Narayan、Eliot Quartaer 文 Shea 译
黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。
天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星——包括地球——也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。
然而黑洞并不是什么都吸收的,它也往外边散发质子.
爆炸的黑洞
黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬·霍金于1974年做此语言时,整个科学界为之震动。黑洞曾被认为是宇宙最终的沉淀所:没有什么可以逃出黑洞,它们吞噬了气体和星体,质量增大,因而洞的体积只会增大,霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量,这种“霍金辐射”对大多数黑洞来说可以忽略不计,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。
奇妙的萎缩的黑洞
当一个粒子从黑洞逃逸而没有偿还它借来的能量,黑洞就会从它的引力场中丧失同样数量的能量,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。因此,黑洞将变轻变小。
沸腾直至毁灭
所有的黑洞都会蒸发,只不过大的黑洞沸腾得较慢,它们的辐射非常微弱,因此另人难以觉察。但是随着黑洞逐渐变小,这个过程会加速,以至最终失控。黑洞委琐时,引力并也会变陡,产生更多的逃逸粒子,从黑洞中掠夺的能量和质量也就越多。黑洞委琐的越来越快,促使蒸发的速度变得越来越快,周围的光环变得更亮、更热,当温度达到10^15℃时,黑洞就会在爆炸中毁灭。
关于黑洞的文章:
自古以来,人类便一直梦想飞上蓝天,可没人知道在湛蓝的天幕之外还有一个硕大的黑色空间。在这个空间有光,有水,有生命。我们美丽的地球也是其中的一员。虽然宇宙是如此绚烂多彩,但在这里也同样是危机四伏的。小行星,红巨星,超新星大爆炸,黑洞……
黑洞,顾名思义就是看不见的具有超强吸引力的物质。自从爱因斯坦和霍金通过猜测并进行理论推导出有这样一种物质之后,科学家们就在不断的探寻,求索,以避免我们的星球被毁灭。
也许你会问,黑洞与地球毁灭有什么关系?让我告诉你,这可大有联系,待你了解他之后就会明白。
黑洞,实际上是一团质量很大的物质,其引力极大(仡今为止还未发现有比它引力更大的物质),形成一个深井。它是由质量和密度极大的恒星不断坍缩而形成的,当恒星内部的物质核心发生极不稳定变化之后会形成一个称为“奇点”的孤立点(有关细节请查阅爱因斯坦的广义相对论)。他会将一切进入视界的物质吸入,任何东西不能从那里逃脱出来(包括光)。他没有具体形状,也无法看见它,只能根据周围行星的走向来判断它的存在。也许你会因为它的神秘莫测而吓的大叫起来,但实际上根本用不着过分担心,虽然它有强大的吸引力但与此同时这也是判断它位置的一个重要证据,就算它对距地球极近的物质产生影响时,我们也还有足够的时间挽救,因为那时它的“正式边界”还离我们很远。况且,恒星坍缩后大部分都会成为中子星或白矮星。但这并不意味着我们就可以放松警惕了(谁知道下一刻被吸入的会不会是我们呢?),这也是人类研究它的原因之一。
我们已经了解了他可怕的吸引力,但没人清楚被吸入后会是怎样的一片景象。对此,学者、科学家们也是莫衷一是,众说纷纭的。有人认为,被他吸入的物质会被毁灭。有的人则认为,黑洞是通往另一宇宙空间的通道。到底被吸入之后会如何我们也不得而知,也许只有那些被吸进去的物质才了解吧!
黑洞只是宇宙千千万万奥秘中的一员,但我们探求它的小部分秘密就不知花费了多少时间,一代人的力量是有限的,但千百万代人的力量汇聚在一起就一定会成功,相信我们以及我们的后代在不久的将来会将黑洞以至整个宇宙的奥秘完全探求出来。
恒星,白矮星,中子星,夸克星,黑洞是依次的五个密度当量星体,密度最小的当然是恒星,黑洞是物质的终极形态,黑洞之后就会发生宇宙大爆炸,能量释放出去后,又进入一个新的循环.
黑洞到底有多可怕
黑洞是宇宙中最危险的存在,任何物质在被黑洞吞噬之前都会先被撕碎成一串原子黑洞的威力是我们想象不到的,如果黑洞形成了,黑洞的质量数据会是太阳的好多倍,并且它可以吸收旁边的物体而不断变大,它的质量可以达到太阳的数十倍,也可能数亿倍。假如很有可能就会被扯裂,并且在死亡之前还得用一个过程,起初什么东西都看不到,由于里面并没有光线,假如穿过视界这个边界线的话,就可能永远回不来了。在黑洞的附近有一堵能量墙,它阻碍了事件视界里面和外面的两个世界,在这时,就让我们想掉进黑洞里面都掉不进去,对事件视界里面是什么样的好奇心,会被无情的敲碎,可能击碎都不能够形容黑洞这偌大的力量。黑洞诞生的原因:银河系中绝大多数的恒星级黑洞,大部分都是由大质量恒星发生超新星爆发形成的,当质量超过太阳30倍的恒星到了主序星阶段的末期,其内部的核聚变,开始生成铁元素的时候,就会发生超新星爆发,这一瞬间恒星内部的辐射压消失,引力完全占据主导作用。然而由于恒星的庞大质量,所以所有的物质都会向中心集中,在这一时刻恒星内部的高温高压,就会直接形成一个黑洞,而这个黑洞会迅速吸收恒星的物质,成为一个质量在太阳三倍以上的黑洞。
黑洞到底是什么
黑洞到底是什么?-搜狗问问
黑洞就是一颗恒星在‘爆发’后的残骸至少比太阳大2倍时,黑洞就形成了。
在恒星生命剩下的10%里,它会逐渐变的更热(就会释放出更多的能量来)。由于自身的质量过大,就会产生很大的引力来;因此恒星只有靠自身的核聚变来产生能量用来平衡它自身的引力。但是在自身的能量用完后,自身的引力就成主导的力量,又没有什么力与它相抗衡就导致了这类恒星本身的崩溃,产生更为彻底的坍缩(当恒星质量比较小时,坍缩就没有那么彻底。像太阳那样大小的恒星只会成为一颗白矮星,而当残骸的质量有太阳的1.44倍以上的就会变成中子星),从而变成一个重力和引力无限大的点。任何物质都将被吸进去。
又由于本身引力很大,甚至连宇宙中最快的光都不逃脱不了。所以,光不被反射,我们就看不到了。因此,就叫做黑洞。
像黑洞这种暗物质,在宇宙大概占了总质量的90%。它们包括白矮星/黑矮星(就是白矮星完全冷却,但是这大概需要大约1亿年的时间)/中子星/黑洞/宇宙弦(它就是宇宙空间中的褶皱,科学家估计那里没有任何生命)等
暗物质的作用很大,它能够依附在星系或星系团。从而来控制宇宙的扩张的速度。如果暗物质超过99%的话,所以的物质都将重新会到一点。因此,暗物质又称宇宙胶。
当你掉入黑洞,可能由于时空扭曲的力——在某一 方面将把你压扁,又从另外的一些方向你伸长,直到你看起来像意大利面条。但是,在里面到底会发生什么。目前的物理界一无所知。
如果想要更加的简单的去理解的话,我们可以把宇宙想象成一条床单,并且由四个人拉紧其四边,而恒星就是一颗保龄球,当把这颗保龄球放在该床单上时,床单就会塌陷下来,但还不足以使床单过分的向下塌陷。接着你想象一下,这个保龄球变成如米粒大小的体积而原本的质量并没有变化,如果床单足够的韧性的话,那颗‘球’就会开始过分的向下塌陷,当你在上面不关放置上什么东西都会朝那颗米粒形成的塌陷窝运动,这就是为什么黑洞的会吸引任何东西。
当然了,用这个比喻不够形象,不过大概的意思就上这个了!!
按照爱因斯坦的说法,黑洞之所以会吸引任何物质的原因,并不是因为它有很大的引力,而是黑洞使得空间塌陷的很严重,只要在黑洞的一定范围内都会由于塌陷窝的原因,而朝黑洞运动。
黑洞简单的说仅仅是恒星的一种特殊形式。既我们常说的死亡后的残骸。
【黑洞是永恒的吗?它到底是什么东西?恒星都不是永恒的,那么黑洞
黑洞并不能一直存在,因为他会在吸收能量的同时释放能量,致使黑洞慢慢消失.黑洞有引力并不奇怪,因为万物都有引力,只不过黑洞的质量大一点而已,只要有质量的物体都有引力,黑洞是一个恒星坍缩形成的,恒星有引力而黑洞的密度比恒星大多了,引力顶比恒星大多了、 追问:那么 黑洞 是一个洞呢,还是一个物体呢?黑洞是因为 超新星爆炸 ,由于重力原因形成的,那么是左右重量物质的 *** 体~那么黑洞应该就是一个物 质体 ,所有经过他身边的东西都会因为重力原因吸过去,最终被泯灭掉~是这样吗?还有就是没个大星系最中心是一个超大的黑洞,好比我们的银河系,一次来维持着银河系的形状,那么这个超大的黑洞也是一个恒星演变过来的吗?回答:黑洞 的巨大引力是会使所有东西吸过去,它并不是一个洞,而是一个谁也说不好的天体,因为它会使物体吸入从而吸取他们的能量,但它也会 辐射能量 ,这种能量会以X射线的形式返还宇宙,追问:谢谢你的回答,我再问你最后一个问题,.我们知道,宇宙 从诞生到现在一直像吹气球一样在不断的膨胀,那么宇宙的中心在哪呢,宇宙的边界是什么样子呢?宇宙是原的还是方的?宇宙最后会像气球一样爆炸吗?宇宙如果有边界,那么宇宙外边是什么呢?是另外的宇宙吗?想想真是不可思议~回答:没有人知道 宇宙 的中心在那里,宇宙模型 有很多,支持最多的是 椭圆形 ,有水中气泡模型等等.没有一个人听说过谁从地球上掉下去,没有一个人听说过地球有边界.所以宇宙当然也没边界.再说,如果宇宙像一个马鞍面那样向远处无限延伸,人们就会遇到在无限远处如何指定 边界条件 的问题.如果宇宙在虚时间里的所有历史是像地球表面的闭合面,人们就根本不用指定边界条件.例如地球是一个 球体 ,就没人说他有边界.宇宙是在膨胀的,有 哈勃 公式和 多普勒效应 可以得知,到她会不会爆炸就说不好了,因为宇宙中有些物质会使宇宙坍缩,不过目前来说还是膨胀大于探索的,追问:你说的是 反物质 回答:不是,反物质是指原子中的电子是带正电的,我说的是一种 暗能量。
黑洞到底是什么?
“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。
所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。 根据广义相对论,引力场将使时空弯曲。
当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。
等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。
说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。
那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。 我们曾经比较详细地介绍了白矮星和中子星形成的过程。
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。
所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。 质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。
而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。
那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。
这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。
这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。
在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。
这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。
更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背! “黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。
许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。
有兴趣的朋友可以去参考专门的论著。
什么是黑洞黑洞是怎样运行的
黑洞是一种引力极强的天体,就连光也不能逃脱.当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了.这时恒星就变成了黑洞.说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出.由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞.然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在.黑洞引申义为无法摆脱的境遇.吸积 黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积.高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性.目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘.当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感.对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据.数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的.天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动.吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构.在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系.即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的.行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的.但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面.然而黑洞并不是什么都吸收的,它也往外边散发质子.蒸发 由于黑洞的密度极大,根据公式我们可以知道密度=质量/体积,为了 黑洞喷射物不断变亮让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞.黑洞是由一些恒星“灭亡”后所形成的死星,他的质量极大,体积极小.但黑洞也有灭亡的那天,按照霍金的理论,把量子理论中的海森堡测不准原理和黑洞结合起来,假设某一粒子在黑洞中高速运动,测不准原理讲一个微观粒子的动量和位置不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大.黑洞相对于微观粒子体积非常大,故其位置不会被很好的定义,因此,其动量定义较准.毁灭 黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸.当英国物理学家史迪芬·霍金于1974年做此预言时,整个科学界为之震动.霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论.他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量.假设一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞.“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸.这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失.当黑洞的质量越来越小时,它的温度会越来越高.这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快.这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸.。
【黑洞形成的原理到底是怎么回事儿呢?】
黑洞的形成是由超大质量恒星死亡时所形成的,恒星的强大引力与内核核聚变的能量压力相互作用,力量平行,所以就能维持一颗恒星的稳定,但当一颗恒星的内核聚变到铁这种元素时,由于铁是非常稳定的,不产生任何能量,却会吸取能量,那恒星内核的能量就会减少,压力也会变小,这样强大的引力就会战胜压力,引力向内压缩内核,在一毫秒的时间,内核就会塌陷,引力就会不断的挤压内核,连原子也压得成粉碎,不会留任何的空间,直到把内核压缩成其体积的亿分之一,那就是一个新诞生的黑洞了,黑洞诞生起,它会不断的吸食恒星的其它部分,每秒钟可吸入几亿吨物质,这样就会超过了其负荷,那黑洞就会把其它物质以光的速度,从恒星的两边喷出,形成了两道以不同方向的光线飞向宇宙,这就是伽玛射线了,同时恒生也会爆炸,这样,黑洞就形成了,比如:把太阳压缩成一座城市大小,这就是黑洞了,。
宇宙中所指的黑洞是什么?宇宙中的黑洞很神秘,黑洞是什么呢?-作
“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然.所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来.根据广义相对论,引力场将使时空弯曲.当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出.而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面.黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想.那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间.我们都知道,光是沿直线传播的.这是一个最基本的常识.可是根据广义相对论,空间会在引力场作用下弯曲.这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线.形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向.在地球上,由于引力场作用很小,这种弯曲是微乎其微的.而在黑洞周围,空间的这种变形非常大.这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球.所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术.更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球.这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!。
为什么宇宙会出现黑洞呢?黑洞是什么?黑洞离地球有多远?
黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸.当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间.但在黑洞[3]情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质.由于高质量而产生的力量,使得 黑洞任何靠近它的物体都会被它吸进去.黑洞开始吞噬恒星的外壳,但黑洞并不能吞噬如此多的物质,黑洞会释放一部分物质,射出两道纯能量——伽马射线. 也可以简单理通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变.由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定.由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素.接着,氦原子也参与聚变,改变结构,生成锂元素.如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成.直至铁元素生成,该恒星便会坍塌.这是由于铁元素相当稳定不能参与聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞.说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,就再不能逃出.跟白矮星和中子星一样,黑洞可能也是由质量大于太阳质量好几倍以上的恒星演化而来的. 当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了.这样,它再也没有足够的力量来承担起外壳巨大的重量.所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积接近无限小、密度几乎无限大的星体.而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”诞生了.。
黑洞里面到底是什么?
黑洞就是一颗至少比太阳大10倍的恒星,在它生命剩下的10%里,它会逐渐变的更热(就会释放出更多的能量来)。由于自身的质量过大,就会产生很大的引力来;因此恒星只有靠自身的核聚变来产生能量用来平衡它自身的引力。但是在自身的能量用完后,自身的引力就成主导的力量,又没有什么力与它相抗衡就导致了这类恒星本身的崩溃,产生更为彻底的坍缩(当恒星质量比较小时,坍缩就没有那么彻底。像太阳那样大小的恒星只会成为一颗白矮星,大到8倍以上的就会变成中子星),从而变成一个重力和引力无限大的点。任何物质都将被吸进去。
又由于本身引力很大,甚至连宇宙中最快的光都不逃脱不了。所以,光不被反射,我们就看不到了。因此,就叫做黑洞。
像黑洞这种暗物质,在宇宙大概占了总质量的90%。它们包括白矮星/黑矮星(就是白矮星完全冷却,但是这大概需要大约1亿年的时间)/中子星/黑洞/宇宙弦(它就是宇宙空间中的褶皱,科学家估计那里没有任何生命)等
暗物质的作用很大,它能够依附在星系或星系团。从而来控制宇宙的扩张的速度。如果暗物质超过99%的话,所以的物质都将重新会到一点。因此,暗物质又称宇宙胶。
当你掉入黑洞,可能由于时空扭曲的力——在某一 方面将把你压扁,又从另外的一些方向你伸长,直到你看起来像意大利面条。但是,在里面到底会发生什么。目前的物理界一无所知。
至于它的形状,你可以根据黑洞的的自身特点来判别,当黑洞还是一颗恒星时,它坍缩的最大力是在中心,因为中心所承受的力是最大的,依次向外展开,所以黑洞的形状很可能是一个呈漏斗装的天体。但是黑洞之所以会呈现出漏斗是因为它的主体,也就是本身物质,它因为本身的大质量小体积而产生出强大的引力使得时空扭曲,所以看起来就像是一个漏斗。