微分方程怎样求特解?
微分方程的特解求法如下:f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)约束条件微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
怎么求解微分方程的特解?
微分方程的特解步骤如下:一个二阶常系数非齐次线性微分方程,首先判断出是什么类型的。然后写出与所给方程对应的齐次方程。接着写出它的特征方程。由于这里λ=0不是特征方程的根,所以可以设出特解。把特解代入所给方程,比较两端x同次幂的系数。举例如下:扩展资料:微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。