黑洞来了

时间:2024-10-10 12:48:16编辑:花茶君

科学家如何探测到黑洞?

01 1.远方天体发出的光线在黑洞附近会被弯曲;2.黑洞的引力会对附近天体产生影响;3.当黑洞吞噬恒星等物质时,这些物质会被黑洞的巨大引力撕扯成气体,并在黑洞视界外围形成一个旋转的气体吸积盘;4.通过探测两个黑洞并合时发出的引力波。 方法一:柴郡猫的笑容 虽然人类不能直接看见黑洞,但是它就好像《爱丽丝漫游仙境》中会露出牙齿的柴郡猫一样,通过强引力所导致的时空扭曲展现它的“笑容”。远方天体发出的光线在黑洞附近会被弯曲,黑洞扮演了引力透镜的角色。 爱因斯坦的广义相对论预言了这种效应,对于一个大质量天体而言,比如黑洞或者星系,会产生强大的引力场,使周围时空弯曲得更加剧烈,包括光在内的任何东西都会受到强大引力场的影响。 哈勃空间望远镜已经拍摄到很多这样的例子,来自遥远背景星系的光线在途经前方星系或者黑洞产生的引力场时,发生了扭曲而形成“弧形”,甚至可变成圆环形状。天文学家认为引力透镜不仅能让我们了解到遥远宇宙(背景星系)的情况,还可能包含着前景星系中央超大质量黑洞的信息。 方法二:星星绕着谁跳舞? 黑洞的引力会对附近天体产生影响。天文学家已经观测到一些天体系统,其中的两颗恒星因彼此间的引力吸引而做互绕运动。天文学家也发现,在某些这类双星系统中只能看到一颗恒星,它绕着某个不可见的伴星做轨道运动。 此外,在绝大多数星系的中心,都存在着一个超大质量黑洞。正如地球绕着太阳转,星系中的恒星也都围绕着这个超级黑洞旋转。 1995年起,天文学家开始对银河系中心区域附近的90颗恒星进行轨迹观测和记录。这些记录显示:所有恒星都围绕着一个黑暗的中心运动着。在20年的时间里,这90颗恒星中的一颗名为S2的恒星完成了一次完整的绕行。根据S2的轨道数据,科学家终于计算出了银河系中心这个黑暗天体的基本数据:质量约为430万倍太阳质量,半径约为0.002光年。这样一个高密度不发光的天体,基本上只可能是黑洞。 方法三:一贪吃就露馅 当黑洞吞噬恒星等物质时,这些物质会被黑洞的巨大引力撕扯成气体,并在黑洞视界外围形成一个旋转的气体吸积盘,其中气体一边旋转一边向视界靠近,最终被吸入黑洞。吸积盘中气体高速旋转,越靠近视界转速越快,高速气体之间的摩擦会产生大量的热,使吸积盘中心部分气体温度达到惊人的高度并发出强烈的X射线。科学家可以通过捕捉宇宙中的X射线,并由此推断黑洞的存在。 有的黑洞处于双星系统中,而另外一个天体是正常的恒星,在这种情形下,正常恒星的物质会被黑洞强大的引力吸引过去。这些物质不会直接掉入黑洞中,而是会首先进入黑洞周围的吸积盘中,某些时候吸积气体的量过多,不能被黑洞全部吞掉,还会沿着黑洞的两个转轴将多余的气体抛射出去,产生非常壮观的喷流。正是由于吸积盘和喷流的存在,它们都能够产生电磁辐射,科学家利用地面或者太空的望远镜就可以探测到黑洞的存在。 中国发射的“慧眼”太空望远镜就是利用这个方法观测黑洞的。 方法四:看不见还可以听 2015年9月14日人类首次探测到引力波,从此拥有了感知宇宙的新能力,通过时空涟漪聆听宇宙天体弹奏的交响乐。而那次探测到的引力波就来自两个黑洞的并合,这也是黑洞以及双黑洞系统存在的最有力证据。 引力波就像时空中的涟漪。两个黑洞组成的天体系统不会产生能够被探测到的电磁波辐射。因此引力波是目前研究双恒星级质量黑洞的唯一手段。引力波为人类打开了一扇研究黑洞的新窗口。引力波探测能够帮助科学家了解双黑洞系统在宇宙中的分布以及形成和演化机制。科学家认为,将来更高精度的引力波探测将有可能探测到黑洞内部的物质分布,从而理解它们的形成和演化历史,而这是其他任何天文观测手段都不可能实现的。


请问科学家是如何观测到黑洞的?

很多人都会认为是爱因斯坦预测了黑洞的存在,其实并不是。虽然爱因斯坦的广义相对论预言了黑洞的存在,但他本人并不认为黑洞是存在的。1915年,德国的科学家史瓦西通过计算得到爱因斯坦场方程的一个真空解,通过这个解可以知道,当一个星体小于一定半径的时候,在这个半径内是会出现奇异现象,在这个半径内连光都无法逃逸,其实这种天体也不是爱因斯坦命名的,而是美国科学家惠勒把它命名为黑洞。

在1915年的时候,史瓦西通过对广义相对论的一个关于球状物质分布的解,根据此解,他发现在这个球状半径内时空弯曲的非常厉害,以至于任何物质都无法从这个球状半径中逃出去,就连光都无法从这个球状半径中逃出,所以说黑洞是“黑”的,它是无法观测,只能通过间接的方式发现其存在。

黑洞是大质量的恒星在演化到后期发生超新星爆炸形成的,一般30倍太阳质量的恒星就会演化成黑洞,而根据史瓦西半径公式得出太阳的史瓦西半径为3000米,地球的史瓦西半径是0.9厘米,通俗点说就是如果把地球压缩到0.9厘米,那么它将会成为一个黑洞。

一直以来,我们看到黑洞的图片都是科学家根据相关理论用电脑模拟出来的,直到2019年的时候,第一张黑洞照片的公布,又一次验证了爱因斯坦广义相对论的正确性。

黑洞是爱因斯坦广义相对论预言的一种现象,爱因斯坦用广义相对论为黑洞进入科学领域铺平了道路,而这并不是他真正的意图

1915年,爱因斯坦发表了一系列广义相对论的演讲,声称空间和时间是一个连续体,可被任何有质量的东西扭曲,扭曲的结果就是引力,即引力是 空间和时间扭曲的结果,并 迫使一切物体,从光到行星,甚至从树上掉下来的苹果,沿着弯曲的路径穿过空间。

当爱因斯坦发展广义相对论的时候,花了大约十年的时间用一种叫张量微积分的数学形式近似地解出自己方程的解,即使是最优秀的科学头脑,也会对数学感到困惑。然而,这一挑战并没有阻止爱因斯坦同时代的一位天文学家——一位名叫卡尔·史瓦西的理论物理学家,史瓦西本质上是一个现实主义者,但他非常擅长处理理论概念,当爱因斯坦1915年发表关于广义相对论的文章时,史瓦西是第一个认识到它们重要性的人之一。

史瓦西是一位德国爱国者,所以当第一次世界大战爆发时,他把手上的天文学研究放在了一边,而选择了参军。当他读到爱因斯坦的论文时正在比利时、法国和俄罗斯前线参加战斗。尽管如此, 史瓦西还是被广义相对论的本质所吸引,开始为它的方程寻找精确答案 。在患了重病被送回家休养两个月后,史瓦西终于能够集中精力完成他的计算,在1916年去世前不久,史瓦西完成了他的工作,同年晚些时候出版了:《论爱因斯坦理论中的点质量引力场》成为现代相对论研究的支柱之一,史瓦西在其中提出了他对爱因斯坦未解方程的解。

当爱因斯坦写下他的广义相对论时发现了描述引力的新方法,即引力是空间和时间扭曲的结果,物质和能量存在于时空背景中,有三个空间维度和一个时间维度,物体的质量会扭曲时空结构——质量越大的物体对时空影响越大。就像放在蹦床上的保龄球会拉伸织物,使其产生凹陷,行星和恒星也会扭曲时空——这种现象被称为“短程线效应”。因此,围绕太阳运行的行星不会受到太阳的引力;只是沿着太阳质量引起的弯曲时空变形运转。行星从未落入太阳的原因是由于行星的运行速度,简洁地说就是“物质告诉时空如何弯曲,时空告诉物质如何移动。”

史瓦西意识到物体表面的逃逸速度取决于它的质量和半径 。例如,地球的逃逸速度约为每秒11.2公里——这是火箭在离开地球之前必须达到的速度。但是,如果能使给定质量的半径足够小,逃逸速度就会增加,直到达到光速,即每秒30万公里,在那时,物质和辐射都无法从物体表面逃逸。此外,原子力或亚原子力无法使物体承受自身的重量。因此,物体坍缩成一个无限小的点——原来的物体从视野中消失,只留下它的重力来标记它的存在。结果,会在时空结构中创造了一个无底洞,称为奇点。史瓦西还解释说,一个奇点被一个球形引力边界所包围,这个边界会永远困住任何进去的东西,这个边界叫做视界( event horizon)。史瓦西还提出了一个公式,可以计算出视界的大小,这就是史瓦西半径,是时空无底洞的边缘,太阳的史瓦西半径为3公里,即它的视界就在离它表面三公里的地方,地球的史瓦西半径是9毫米。

史瓦西的论文中包含了激进的预测,时空无底洞的想法困扰了许多科学家包括爱因斯坦, 爱因斯坦本人并不相信黑洞的存在,尽管他自己的理论预言了黑洞的存在,但他强烈反对这一观点。1939年,爱因斯坦在《数学年鉴》上发表了一篇文章,试图证明这样的时空无底洞是不可能存在的。 因为它公然违背了人类经验——世界是有限的,一切都可以称重和测量。

1967年 美国物理学家约翰·惠勒将史瓦西提出的”引力完全坍缩的物体“的原始说法进行改进,将之命名为黑洞。 科学家们大约五十年来都没有意识到它在恒星演化中的重要性,直到最近才意识到它对宇宙发展的巨大影响。现代的科学共识是——黑洞确实存在,而且是宇宙最重要的特征之一,天文学家已经能够以不同方式间接地探测到它们,因此黑洞的存在是毫无疑问的。

首先要明确一下, 黑洞不是爱因斯坦预测到的 ,1905年爱因斯坦发表狭义相对论后,从1907年开始了长达八年的对引力的相对性理论的 探索 。在历经多次弯路和错误之后,他于1915年11月在普鲁士科学院上作了发言,解释 引力如何作用时, 给出了著名的爱因斯坦引力场方程:

整个方程的意义是: 空间物质的能量-动量分布决定空间的弯曲状况。

1916年,德国天文学家卡尔·史瓦西通过计算得到了爱因斯坦引力场方程的一个真空解,这个解表明,如果将大量物质集中于空间一点,其周围会产生奇异的现象,即在质点周围存在一个界面——“视界”一旦进入这个界面,即使光也无法逃脱。这种“不可思议的天体”被美国物理学家约翰·阿奇博尔德·惠勒命名为“黑洞”。

爱因斯坦对物体之间存在相互吸引的引力这种现象解释为因为物体的质量使得物体所在环境的空间、时间扭曲,而这种扭曲的结果并迫使一切物体,沿着弯曲的路径穿过空间,这种现象在最后外我们的观察中就感觉物质之间存在相关吸引的引力。比如:我们日常生活中看到的苹果从树上掉到了地上 现象 ,爱因斯坦给出解释:因为地球的存在,使得地球周围的空间、时间发生了扭曲, 苹果沿着扭曲空间行进而已;而牛顿给出的解:世界万物都存在相互吸引,苹果受到了地球的引力才从树上掉了下来。后来在天文观察中,发现爱因斯坦的理论计算结果更接近天体运动轨迹,如关于水星近日点进动值的计算结果。 卡尔·史瓦西利用爱因斯坦的引力场方程,计算出了一个特殊的存在,即根据物体的质量可以使其周围的环境的空间、时间扭曲,而且扭曲程度跟其能动张量 Tuv成正比的。通过计算卡尔·史瓦西得出如下结论:当一个天体的能动张量Tuv足够大,使其周围的环境的空间、时间严重扭曲,以至于当光线(宇宙中速度最快的物体)靠近这个天体一定距离是都无法逃逸,后来科学家把这种天体命名为黑洞。

换句话说,爱因斯坦只是给出解释引力现象的一种方法,而卡尔·史瓦西利用这种方法推算出来一种特殊的天体,然后这种天体被美国物理学家约翰·阿奇博尔德·惠勒命名为“黑洞”。

北京时间10日晚9时许,包括中国在内,全球多地天文学家同步公布了黑洞“真容”,这是人类首次拍到黑洞的照片, 证明在极端条件下 爱因斯坦广义相对论 仍然成立 。该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年,质量约为太阳的65亿倍。它的核心区域存在一个阴影,周围环绕一个新月状光环,如上图。


黑洞是什么

黑洞是现代广义相对论中,存在于宇宙空间中的一种天体。黑洞的引力极其强大,使得视界内的逃逸速度大于光速。故而,黑洞是时空曲率大到光都无法从其事件视界逃脱的天体。1916年,德国天文学家卡尔·史瓦西通过计算得到了爱因斯坦场方程的一个真空解,这个解表明,如果一个静态球对称星体实际半径小于一个定值,其周围会产生奇异的现象,即存在一个界面“视界”,一旦进入这个界面,即使光也无法逃脱。这个定值称作史瓦西半径,这种“不可思议的天体”被美国物理学家约翰·阿奇博尔德·惠勒命名为“黑洞”。黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因黑洞引力带来的加速度导致的摩擦而放出x射线和γ射线的边缘讯息,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹来得出,还可以取得其位置以及质量。北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年,质量约为太阳的65亿倍。北京时间2021年3月24日晚10点,偏振光下M87超大质量黑洞图像公开。北京时间2022年5月12日晚9点,事件视界望远镜合作组织正式发布了银河系中心黑洞人马座A的首张照片。霍金的黑洞理论:霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论,他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量。假设一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞。在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。以上内容参考百度百科-黑洞

黑洞是什么

黑洞是现代广义相对论中,存在于宇宙空间中的一种天体。黑洞的引力极其强大,使得视界内的逃逸速度大于光速。故而,“黑洞是时空曲率大到光都无法从其事件视界逃脱的天体”。1916年,德国天文学家卡尔·史瓦西通过计算得到了爱因斯坦场方程的一个真空解,这个解表明,如果一个静态球对称星体实际半径小于一个定值。其周围会产生奇异的现象,即存在一个界面——“视界”,一旦进入这个界面,即使光也无法逃脱。这个定值称作史瓦西半径,这种“不可思议的天体”被美国物理学家约翰·阿奇博尔德·惠勒命名为“黑洞”。黑洞的存在:黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因黑洞引力带来的加速度导致的摩擦而放出x射线和γ射线的“边缘讯息”,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹来得出,还可以取得其位置以及质量。北京时间2022年5月12日晚9点,事件视界望远镜合作组织正式发布了银河系中心黑洞人马座A*(SgrA*)的首张照片。

上一篇:超级马里奥:奥德赛

下一篇:没有了